Perception of sibilant geminates by non-native listeners

Bożena Pająk UC San Diego bpajak@ling.ucsd.edu

Southern California Workshop on Phonetics/Phonology :: Pomona College, Nov 1, 2008

Geminates: long consonants

E.g., bello 'beautiful' belo 'I bleat' (Italian) takka 'fireplace' taka- 'back' (Finnish)

 1.5-3 times as long as singletons (Ladefoged & Maddieson 1996)

Distinguished mainly by duration
 but also: burst, VOT, amplitude, etc.
 (Lahiri & Hankamer 1988, Abramson 1986, 1992, 1999, Arvaniti 2001, Muller 2001)

Typology of geminates

Cross-linguistically, the most common context for geminates is:

V_V

(Thurgood 1993)

Non-intervocalic geminates

Examples:

- Taba: *tanggal* 'date' (Bowden 2001: 39)
- Cypriot Greek: *ppefto* 'I fall' (Arvaniti 2001: 23)
- Palestinian Arabic: ?imm 'mother' (Abu Salim 1980: 6)
- Moroccan Arabic: *ttlata* 'Tuesday' (Heath 1987: 38)

Typology of geminates

Survey of 40 languages with geminates:

	CONTEXT		
	intervocalic	one-sided vowel-adjacent	non-vowel- adjacent
Number of languages with geminates in a	38	35	4
particular context $N = 40$		word-initial: 30 word-medial: 11 word-final: 6	

Implicational universal: (Thurgood 1993) non-intervocalic geminates > intervocalic geminates

Why are non-intervocalic geminates avoided?

Restrictions on syllable structure?

But there are languages with very permissive syllable structure that avoid non-intervocalic geminates (e.g., Polish)

> z-bʒdẽk^jɛm *z-znak^jɛm

'with a plunk''with a sign'

Why are non-intervocalic geminates avoided?

Hypothesis:

- Perceptually-based markedness hierarchy
 - non-vowel-adjacent > single vowel-adjacent > intervocalic #GGC, CGG#, CGGC #GGV, VGG#, VGGC, CGGV VGGV
- Non-intervocalic geminates are marked because they are perceptually less salient

Experiments: goals

- Investigate the acoustics of VGGV vs. non-VGGV
- Check how non-native listeners perceive the gem-sing contrast in V_V vs. non-V_V contexts
- Support / reject the hypothesis that the markedness hierarchy is perceptually based

Experiment 1: Acoustics

- Testing the geminate-singleton contrast for coronal fricatives ([ss]~[s] / [zz]~[z])
- 4 conditions:

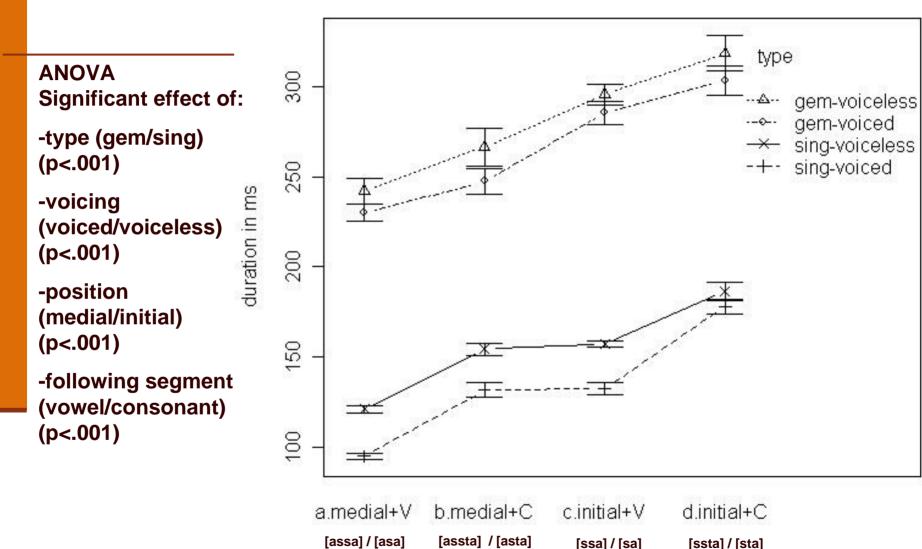
POSITION IN A WORD	FOLLOWING SEGMENT		
	VOWEL	CONSONANT	
MEDIAL	[assa] ~ [asa]	[assta] ~ [asta]	
	[azza] ~ [aza]	[azzda] ~ [azda]	
INITIAL	$[ssa] \sim [sa]$	[ssta] ~ [sta]	
INTIAL	$[zza] \sim [za]$	[zzda] ~ [zda]	

- Test words recorded by a native Moroccan Arabic speaker (all the sequences are phonotactically legal in Moroccan Arabic)
- 18 repetitions for each condition (recorded with fillers, in three separate sessions)
 Beters Baiak :: UC San Diego

Predictions

If non-V_V geminates are less perceptible than V_V geminates, maybe it's because non-V_V geminates are shorter in duration

> medial+V medial+C initial+V initial+C


[assa], [azza] [assta], [azzda] [ssa], [zza] [ssta], [zzda]

geminate duration

actual result

Results: fricative durations

[azza] / [aza]

[azzda] / [azda]

[zza] / [za]

[zzda] / [zda]

Results: fricative durations

Mean durations (in ms)

type		condition			
		Medial+V	Medial	Initial+V	Initial-C
geminate	voiceless	242 (se=7)	266 (11)	296 (6)	318 (10)
Sommare	voiced	230 (5)	248 (7)	286 (6)	303 (8)
singleton	voiceless	121 (2)	154 (4)	157 (2)	186 (5)
Singleton	voiced	95 (2)	131 (4)	132 (4)	178 (4)
geminate/singleton	voiceless	2.0	1.7	1.9	1.7
ratio	voiced	2.4	1.9	2.2	1.7

- Initial geminates are longer than medial geminates
 - Should their perception be easier? Or is longer duration an attempt to compensate for their poorer perceptibility?
- The gem/sing duration ratio is lower when the following segment is a consonant than if it is a vowel
 - Does it make the gem/sing contrast in that context more difficult to hear?

Experiment 2: Perception

Method: AX discrimination task

'different' pairs

e.g. [assa]₁~[asa]₁ [asa]₁~[assa]₁ 'same' pairs [assa]₁~[assa]₂ [asa]₁~[asa]₂

6 repetitions of a block: 64 word pairs (32 test pairs + 32 fillers)

Each subject heard 12 repetitions of each test condition

Participants

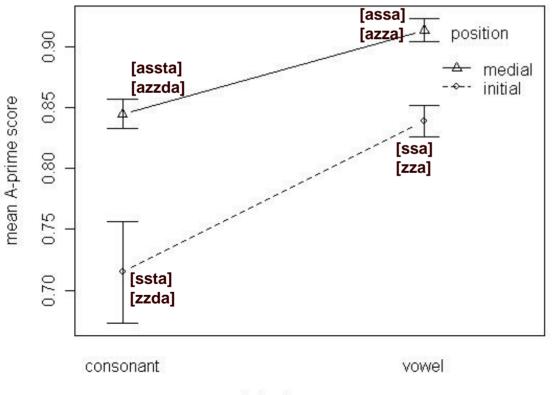
34 undergraduate students at UCSD:

native speakers of English

 with at most limited exposure to languages that use geminates contrastively (German, Japanese, Korean)

Predictions

Predictions:


 better performance with 'medial' tokens than with 'initial' tokens

better performance with '+V' tokens than '+C' tokens

Results

ANOVA: significant effect of *position* (p<.001) and *following segment* (p<.001)

Mean A-prime scores:

Subjects discriminated between the gem/sing contrast: -better in medial than in initial position -better when the following segment was a V than when it was a C

Potential issues

Only two different tokens were used for each condition

The role of adjacent vowels requires further investigation

Experiment 3: Perception

All the tokens have spliced vowels:

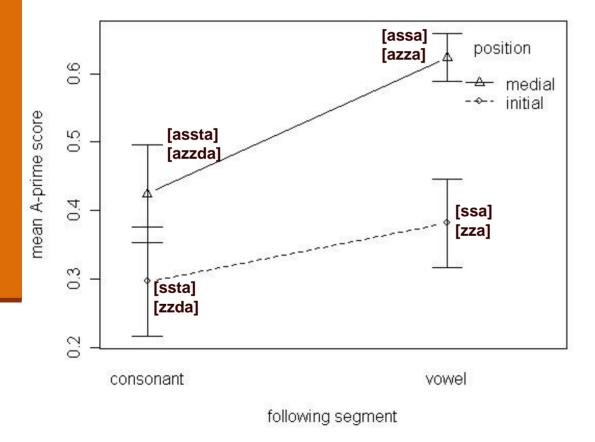
4 versions of the experiment

A:	_{gem} [a]ss[a] _{gem}	_{sg} [a]s[a] _{sg}	'matching vowels'
B :	_{sg} [a]ss[a] _{sg}	_{gem} [a]s[a] _{gem}	'non-matching vowels'
• C:	_{gem} [a]ss[a] _{gem}	_{gem} [a]s[a] _{gem}	'geminate vowels'
D:	_{sg} [a]ss[a] _{sg}	_{sg} [a]s[a] _{sg}	'singleton vowels'

Experiment 3: Perception

Introducing variation

- For each condition, 5 different tokens were chosen for splicing (5 for fricatives and 5 for vowels)
- In each version of the experiment, 10 different combinations of spliced fricatives and vowels were created
- Each subject listened to 4 different combinations of tokens (repeated 3 times)


Predictions: 'matching vowels'

Repetition of the results from the previous experiment, that is:

- better performance with 'medial' tokens than with 'initial' tokens
- better performance with '+V' tokens than '+C' tokens

Preliminary results: 'matching vowels' (subjects=19)

Significant effect of *position* (p<.05) and *following segment* (p<.01)

Subjects discriminated between the gem/sing contrast:

-better in medial than in initial position

-better when the following segment was a V than when it was a C Why are non-intervocalic geminates less perceptible?

The effect of following segment.

- The gem/sing contrast is less perceptible when the following segment is a C than when it is a V
- Explanation: the gem/sing duration ratio is lower in '+C' contexts than in '+V' contexts
 (i.e., the geminates and the singletons are closer together in duration in the '+C' contexts)

Why are non-intervocalic geminates less perceptible?

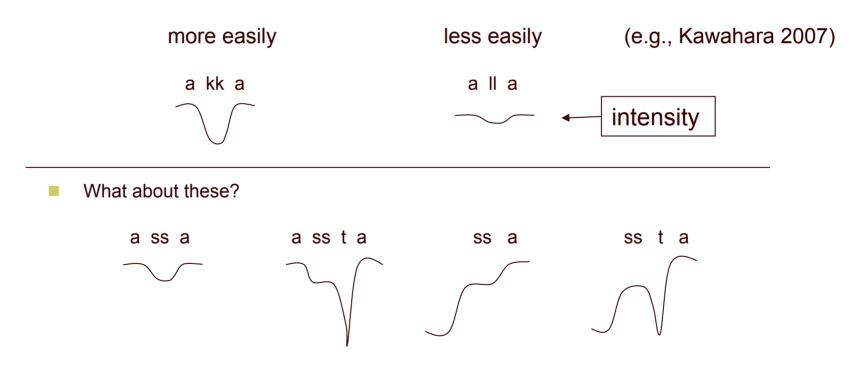
The effect of position:

- The gem/sing contrast is less perceptible in the initial than in the medial position
- Tentative explanation: influence of the following vowel

Differences in vowel durations

• Medial' tokens: <u>final vowel</u> is the same in gem words than in sing words

Mean duration:	265ms (se=7)	273ms (6)
	ass <u>a</u>	as <u>a</u>
	asst <u>a</u>	ast <u>a</u>
Mean duration:	295ms (7)	289ms (8)
Mean duration:	295ms (7) azz <u>a</u>	289ms (8) az <u>a</u>


 'Initial' tokens: <u>final vowel</u> is shorter in gem words than in sing words (p<.001) (minimal word effect?)

Mean duration:	273ms (7)	300ms (7)
	ss <u>a</u>	s <u>a</u>
	sst <u>a</u>	st <u>a</u>
Mean duration:	297ms (8)	332ms (9)
	zz <u>a</u>	z <u>a</u>

Identifying geminate boundaries

Using intensity jumps as a cue

The boundaries identified:

Conclusion & future direction

- Position in a word and the nature of the following segments influence the perception of the gem-sing contrast
 - in a way that is consistent with typological distribution of geminates
- Therefore, there is initial support for the claim that the contextual markedness hierarchy has perceptual basis
- Future work:
 - Further investigation of the acoustics and the perception of geminates, varying the segments and the exact context

Acknowledgments

Amalia Arvaniti, Eric Baković, Klinton Bicknell, Rebecca Colavin, Sarah Creel, Alex del Giudice, Noah Girgis, Matt Goldrick, Cindy Kilpatrick, Mary Paster, Sharon Rose, Ryan Shosted, Megha Sundara

Research Assistants:

Christopher Gaudiot & Rachel O'Sullivan

Thank you